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ABSTRACT

Hawaii experienced record-high sea levels during 2017, which followed the 2015 strong El Niño and

coincided with weak trade winds in the tropical northeastern Pacific. The record sea levels were associated

with a combination of processes, an important contributing factor of which was the persistent high sea level

(;10 cm above normal) over a large region stretching betweenHawaii andMexico. High sea levels at Mexico

are known to occur during strong El Niño as the coastal thermocline deepens. Planetary wave theory predicts

that these coastal anomalies propagate westward into the basin interior; however, high sea levels at Hawaii do

not occur consistently following strong El Niño events. In particular, Hawaii sea levels remained near normal

following the previous strong El Niño of 1997. The processes controlling whether Hawaii sea levels rise after

El Niño have so far remained unknown. Atmosphere-forced ocean model experiments show that anomalous

surface cooling, controlled by variable trade winds, impacts sea level via mixed layer density, explainingmuch

of the difference in Hawaiian sea level response after the two recent strong El Niño events. In climate model

projections with greenhouse warming, more frequent weak trade winds following El Niño events are ex-

pected, suggesting that the occurrence of high sea levels at Hawaii will increase as oceanic anomalies more

often traverse the basin.

1. Introduction

Record-high sea levels occurred in the Hawaiian

Islands during 2017 (Fig. 1a) and contributed to minor

recurrent flooding of coastal areas. High water levels

began in 2016 and peaked during April and August 2017

when many days experienced levels 20–30 cm above the

daily highest astronomical tidal prediction (Yoon et al.

2018). Impacts of the prolonged event included beach

erosion as more wave energy reached the coast, minor

wave inundation that caused saltwater flooding of low-

lying areas, and failed drainage infrastructure due to

saltwater blockage (Anderson et al. 2018). The high

sea levels were caused by the superposition, or stack-

ing, of multiple contributions (Yoon et al. 2018) that

mainly consisted of sea level rise (Chen et al. 2017;

Nerem et al. 2018), oceanic mesoscale variability around

the Hawaiian Islands (Firing and Merrifield 2004)

(Fig. 2), and prolonged high regional sea levels about

10 cm above normal. During August 2017, the Honolulu

Harbor tide gauge recorded the highest monthly aver-

age water level since records began in 1905 (17 cm above

the climatology during 1993–2017). Whereas the am-

plitude of each process that contributed to the record-

high sea levels was estimated in near–real time using tide

gauge and satellite altimetry measurements (Yoon et al.

2018; see also Table 1), the causes of the largest com-

ponent of the record event—regionally high sea levels

during 2016 and 2017—are thus far unexplained.

The 2016–17 Hawaii high sea levels followed an El

Niño event that peaked during 2015 with the warmest

sea surface temperature (SST) anomalies in the equa-

torial eastern Pacific so far this century (L’Heureux et al.

2017). The SST anomaly in the Niño-3 region during

December 2015 (2.78–2.98C) was nearly as warm as

during the same month in 1997 (3.28–3.38C), when the

strongest El Niño on record peaked (temperature

ranges are between different SST reconstructions;

Huang et al. 2017; Rayner et al. 2003). Prior to the
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peak of both strong El Niño events [monthly Niño-3
. 2 standard deviations (SD); Fig. 1b], associated with

the warming surface ocean were equatorial Kelvin

waves (Wyrtki 1984) that deepened the thermocline in

the eastern Pacific and caused a corresponding rise in

the sea surface height (SSH; Figs. 3a,b). High sea

levels extended from the equator along the Central

American and North American coasts due to coastally

trapped Kelvin wave propagation (Chelton and Davis

1982). The off-equatorial high SSH was much more

FIG. 1. Observedmonthly sea level anomalies aroundHawaii and related tropical Pacific climate indices. (a) Five

tide gauge records (thin orange), average of tide gauges (thick orange), and merged regional SSH (blue) from

ORA-S4 (1979–92) and CMEMS satellite altimetry (1993–Jun 2018). The long-term trends (1993–2017, linear

trends) are retained here and removed elsewhere. Locations of the tide gauges and theHawaii averaging region are

shown in Fig. 2. (b) The Niño-3 (green lines), Ekman (red and blue bars indicate the duration of upwelling and

downwelling motions exceeding 1 SD, respectively), and PMM (purple lines) standardized indices. Thick lines

indicate the 13-month running mean of the monthly Niño-3 and PMM indices (thin lines). (c) The SSH anomaly

from (a) with a 13-month running mean applied (blue line) and the similarly filtered upper-100-m thermosteric sea

level around Hawaii indicated by the dashed lines and respective shading (orange: positive; blue: negative). The

SSH anomaly time series is detrended and standardized to have a mean of 0 and SD of 1. Thermosteric sea level is

standardized proportionally to the SD of SSH. Years following El Niño events referred to in the text are

shaded gray.
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pronounced prior and during the recent strong El

Niño compared to the previous event (i.e., 2014/15 vs

1996/97; Fig. 3c). During 2014/15, there was a more

prolonged Niño-3 warming (15 months . 0.5 SD

compared to 8 months during 1996/97; Fig. 1b); also,

anticyclonic wind stress curl offshore the Central

American mountain gaps (Alexander et al. 2012) was

stronger and broader in area than during 1996/97

(Fig. 3), which likely forced the regional thermocline

deeper (Chang et al. 2012). Thus, by the end of 2015,

sea levels were much higher in the tropical north-

eastern Pacific than during 1997 (Fig. 3) although

around Hawaii, in the tropical northcentral Pacific,

sea levels were slightly below normal throughout both

strong El Niño events (i.e., 1997 and 2015; Fig. 1a).

Planetary (Rossby) wave theory suggests that sea

level anomalies along the eastern Pacific boundary

propagate westward into the basin interior (Jacobs et al.

1994), taking 1–2 years to reach Hawaii based on phase

speed estimates from satellite altimetry measurements

of sea surface height (SSH) (Chelton and Schlax 1996).

This is consistent with the 2016/17 Hawaii high sea level

event. By the end of 2016, the Hawaii sea level exceeded

12 SD (Fig. 1c), which was the highest anomaly in over

three decades even after accounting for long-term sea

level rise. The high sea levels persisted through 2017 and

occurred in a broad expanse of the tropical North Pacific

between Hawaii and Mexico (Fig. 4a). In contrast, sea

levels remained near normal in the same region during

1998/99 after the previous strong El Niño (Figs. 1c and

4b). This raises the question of which processes deter-

mine whether high sea levels follow an El Niño and,

more generally, what controls interannual sea level

variability around Hawaii.

Large Hawaii sea level swings also occurred during

the 1980s (Figs. 1a,c), following El Niño events of weak

(1979), strong (1982), or moderate (1986) strength as

inferred from the Niño-3 amplitude (Fig. 1b). Since

homogeneous satellite altimetry measurements began

in 1993, however, the annual mean sea level anomaly

aroundHawaii exceeded11 SDonly once before 2016/17

(Fig. 1c). That 2003/04 high sea level event was attributed

to Pacific decadal variability (Schneider et al. 2002) and

associatedwith a large-scalewind stress curl anomaly that

supported a deeper-than-normal thermocline around

Hawaii (Firing et al. 2004), rather than with interannual

variability associated with ElNiño–SouthernOscillation

(ENSO). In contrast, the recent high sea levels, which

were more than twice as extreme (.12 SD vs 11 SD),

followed the strongest El Niño since 1997.

There exists somewhat of a mystery concerning

Hawaii sea levels, in spite of well-established dynami-

cal understanding of interannual sea level variability in

FIG. 2. Satellite observed SSH anomalies (cm) during August

2017. The box indicates the Hawaii averaging region (188–238N,

1608–1548W), which was 10 cm above normal and similar to the

domain average of the whole map (9 cm; 158–258N, 1658–1508W).

Within the Hawaii region, sea level anomalies ranged from 8 cm

below normal to 30 cm above normal as a result of, respectively,

upwelling and downwelling motions associated with oceanic me-

soscale eddies. The long-term trend (1993–2017; see Table 1) is

retained here to match the SSH time series in Fig. 1a. Circles in-

dicate locations of the five tide gauges on four of the main

Hawaiian Islands (Kauai, Oahu, Maui, and Hawaii from northwest

to southeast).

TABLE 1. Nontidal contributions to the 17.3 cmmonthly sea level anomaly during Aug 2017 at the Honolulu Harbor tide gauge. Hawaii

regional amplitudes derived from satellite altimetry measurements are shown in parentheses (10.3 cm total monthly anomaly). All

anomalies and trends are relative to 1993–2017.

Process Amplitude Method

Long-term sea level rise

relative to climatology

2.8 cm (2.2 cm) Midpoint of the all-Hawaii tide gauge linear trend in Fig. 1a (midpoint

of satellite altimetry linear trend in Fig. 1a)

Regional sea level anomaly 12.9 cm (8.1 cm) Average of the all-Hawaii tide gauge anomaly in Fig. 1a minus the

long-term sea level rise (Hawaii regional-average anomaly in Fig. 2

minus the long-term sea level rise)

Mesoscale or local variability 1.6 cm (210 to 28 cm) Residual of the Honolulu August 2017 anomaly minus the long-term

sea level rise and the regional sea level anomaly (range of anomalies

within the Hawaii region in Fig. 2 minus the long-term sea level rise)
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most other regions of the tropical Pacific. Dynamical

forcing on sea levels include a combination of eastward-

propagating equatorial Kelvin waves (Wyrtki 1984),

coastal-trapped Kelvin waves (Chelton andDavis 1982),

and westward-propagating Rossby waves (Chelton and

Schlax 1996), which deepen or shoal the thermocline

while the SSH generally mirrors the subsurface changes

(Delcroix 1998). Oceanic models of the Kelvin and

Rossby wave theory describe well these processes and,

specifically, the sea level response to winds associated

with strong El Niño events (e.g., Widlansky et al. 2014,

2015). The dynamical models are particularly successful

FIG. 3. (left) Satellite-observed SSH (cm; shading), reanalysis wind stress (Nm22; vectors), and derived Ekman

vertical velocity (cm day21; contours) anomalies before and during the peak of the two strong El Niño events.

(a) Jan 2014–Dec 2015, (b) Jan 1996–Dec 1997, and (c) 2014/15 minus 1996/97. Purple and green contours re-

spectively indicate downwelling and upwellingmotions, starting at61 cm day21 with an increment of62 cm day21.

Anomalies are with respect to the 1993–2017 monthly mean climatology. The linear trend (1993–2017) has

been removed from each variable at each grid location. The Hawaii and Ekman averaging regions (188–238N,

1608–1548W and 188–238N, 1508–1208W) are indicated by the small and large boxes, respectively. (right) Circles on

the regional maps indicate tide gauge locations as in Fig. 2.
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in the equatorial Pacific and near the eastern boundary

of the ocean (e.g., McGregor et al. 2012), but inconsis-

tently resolve the sea level variability around Hawaii

(Fu and Qiu 2002). Such a deficiency suggests that

other modes of variability, or perhaps thermody-

namical processes, may be involved. Around Hawaii,

oceanic temperature variations near the surface are in

fact correlated with interannual sea level anomalies

(Fig. 1c; r 5 0.61), with the upper 100m of the ocean

having been especially warm during the high sea levels

of 2016/17 and also 2003/04 (i.e., positive thermosteric

contributions to sea level anomalies during both times)

but cooler than normal during 1998/99 when sea levels

were near normal. Yet, the question remains about how

the temperature variations around Hawaii are related

to large-scale forcing and modes of variability.

Understanding why the sea level at Hawaii remained

near normal after the strongest El Niño in 1997, whereas

record-high sea levels occurred following the 2015 El

Niño, is key to better explaining the sea level and

thereby the ocean heat content relationship with ENSO

throughout the eastern half of the tropical North Pacific

FIG. 4. As in Fig. 3, but for anomalies after the peak of the two strongEl Niño events. (a) Jan 2016–Dec 2017, (b) Jan

1998–Dec 1999, and (c) 2016/17 minus 1998/99.
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(i.e., the SSH difference in Fig. 4c). For Hawaii, better

understanding of the sea level response to El Niño
may help to improve future regional outlooks of inter-

annual variability and associated coastal flooding haz-

ards. More broadly, it is unknown why after some El

Niño events, sea level anomalies traverse the basin,

whereas other times oceanic anomalies are confined to

the eastern boundary.

The paper is organized as follows. First, through ob-

servational analysis (section 2), we describe the ocean–

atmosphere climate processes related to interannual sea

level variability in the tropical northeastern and north

central Pacific with a focus around Hawaii. In particular,

we identify differences in atmospheric forcing that could

potentially explain the Hawaiian sea level anomalies

(near-normal vs record-high) following the 1997 and

2015 El Niño events. Next, we utilize a hierarchy of in-

creasingly sophisticated models (section 3) to explore

how each of these processes contributed to sea level

variability and identify conditions that led to the 2016/17

high sea level event. We then assess in coupled ocean–

atmosphere climate model projections (section 4) the

likelihood of such conditions occurring in the remainder

of the twenty-first century with greenhouse warming.

Finally, we discuss in section 5 the implications of these

results with regards to oceanic teleconnections and

coastal impacts of sea level variability.

2. Observational analysis

a. Data

To describe the sea level around Hawaii (Fig. 1a) we

used measurements from shore-based tide gauges and

satellite-based altimetry, which were complemented by

an ocean model reanalysis of the SSH. Five tide gauge

records (Hilo, Honolulu, Kahulai, Mokuoloe, and

Nawiliwilli) covering the January 1979–June 2018

period on four of the main Hawaiian Islands (Fig. 2)

were used from the Quality Assessment of Sea Level

Data archive (Caldwell et al. 2015). We reprocessed

daily gridded altimetry data (0.258 latitude3 longitude)

from the SSALTO/DUACS multimission dataset distrib-

uted by the European Copernicus Marine Environment

Monitoring Service (CMEMS) into monthly anomalies

(January 1993–June 2018) with the dynamic atmospheric

correction removed so that the inverse-barometer effect

on sea level was included in our analysis.We note that the

altimetry product is not affected by any vertical land

motion in Hawaii. Both the altimetry and tide gauge data

do include effects of self-attraction and loading associ-

ated with the global hydrological cycle (Tamisiea et al.

2010; Vinogradova et al. 2010), although the variabil-

ity associated with this is small in the Hawaii region

(i.e., around 1 cm or less). Most importantly for as-

sessing large-scale (i.e., tropical northeastern and

north-central Pacific) and regional (i.e., Hawaii) pro-

cesses, satellite altimetry describes the sea level vari-

ability away from the tide gauges. We used simulated

monthly mean SSH from the ECMWFOcean Reanalysis

System 4 (ORA-S4; Balmaseda et al. 2013) as a proxy

for large-scale and regional sea level variability prior to

the satellite altimetry observations (1979–92), with the

inverse-barometer effect added to the original ORA-S4

SSH variable. The simulated SSH from ORA-S4 aver-

aged around Hawaii is similar to the average tide gauge

monthly anomalies except for notable deviations during

1979–81 (Fig. 1a), which was prior to the assimilation of

satellite-measured SST (Reynolds et al. 2002) into the

ocean reanalysis.

We used atmosphere (ERA-Interim; Dee et al. 2011)

and ocean reanalysis (ORA-S4) products to assess dy-

namical and thermodynamical air–sea coupling pro-

cesses affecting Hawaii sea level. We calculated the

Ekman pumping velocity as

w
E
5=3

t

rf
, (1)

where t is the surface wind stress, r is the representative

seawater density (1030kgm23), and f is the Coriolis

parameter. We used the 178C isotherm of potential

temperature as a proxy for the thermocline depth as it is

indicative of the averagemaximum vertical temperature

gradient near Hawaii (Fiedler 2010). The results are

robust to using a range of isotherms between 158 and
208C. We considered surface wind speed as a proxy for

the amount of cooling from the ocean mixed layer via

surface heat fluxes (McPhaden and Hayes 1991; Meyers

et al. 1986), omitting the effects of any changes in the

air–sea humidity or temperature gradients (Lin et al.

2008). Objectively analyzed latent and sensible heat

fluxes are from theWoodsHoleOceanographic Institution

OAFlux project (Yu and Weller 2007), which together

mirrors the wind speed.

For all variables, we calculated the monthly mean

anomalies with respect to the 1993–2017 average sea-

sonal cycle. We also subtracted the location-specific

linear trend for the same period; thus, the contribution

of recent sea level rise (Fig. 1a) is removed from our

assessment of the 2017 high sea level event (Fig. 1c and

Table 1).

b. Description

Satellite altimetry shows the higher-than-normal sea

levels at the Mexican coast during 1997 and 2014–15,

with evidence of westward propagation toward Hawaii

(Figs. 5a,b), which is consistent with the canonical sea
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level response after the peak of El Niño (Fig. 6a). The

high eastern Pacific sea level during 2014 was associated

with weak El Niño conditions (McPhaden et al. 2015;

Menkes et al. 2014) that occurred prior to the strong El

Niño in 2015. The sea level at Hawaii rose during

2016 and reached a record high during 2017, but only

small-amplitude anomalies occurred during 1998 and

1999 (Fig. 1c). In both cases, higher sea levels coin-

cided with a deepening of the thermocline around

Hawaii (Figs. 5c,d). This is dynamically consistent with

westward-propagating oceanic Rossby waves (Chelton

and Schlax 1996; Jacobs et al. 1994; Qiu et al. 1997) that

originated during the preceding El Niño conditions,

likely due to a combination of coastal-trapped Kelvin

wave energy radiating offshore (Hughes et al. 2019;

Johnson andO’Brien 1990) and downwelling, or Ekman

pumping (Timmermann et al. 2010), associated with

anticyclonic wind stress curl within the basin (Fu and

Qiu 2002).

A possible explanation for the different Hawaii sea

level anomalies following the El Niño events is that

anomalous wind stress curl forcing acted to enhance

or diminish the Rossby wave amplitudes en route to

Hawaii. More anticyclonic wind stress curl occurred

during 2014/15 near the Mexican and Central American

coasts compared to 1996/97 (Fig. 3c), which may have

enhanced the Rossby waves initially as they propagated

away from the coast. After the peak of both El Niño
events, however, there were only subtle differences

in the wind stress curl between Mexico and Hawaii

(slightly more anticyclonic during 1998/99; Fig. 4b),

which suggests that large-scale Ekman pumping does

not account for the different sea level anomalies at

Hawaii. Although to the lee of the Hawaiian Islands,

near the wind wake caused by the high mountains (Xie

et al. 2001), there were substantial Ekman pumping

differences after the two strong El Niño events (Fig. 4,

insets), which could have contributed to mesoscale sea

level variability (Fig. 2) or other downstream effects.

Prior to the two El Niño events, there were more subtle

differences in the Ekman pumping aroundHawaii as the

trade winds were weaker than normal in both cases

(Fig. 3, insets).

Rather than wind stress curl, one of the most striking

differences in the tropical northeastern Pacific atmo-

sphere following the 2015 El Niño was that the trade

winds remained weak for long after El Niño ended

(i.e., southwesterly anomalies opposing the typical

northeasterly wind between Hawaii and Mexico during

2016/17; Fig. 4a), whereas the winds were mostly stron-

ger than normal during 1998/99 (Fig. 4b). The difference

in winds following the two El Niño events (Fig. 4c)

closely resembles the wind stress pattern associated with

the Pacific meridional mode (PMM; cf. Fig. 6b; Chiang

and Vimont 2004), which has been positive almost every

month since 2015 but was extremely negative during

1998/99 (Fig. 1b).

The weaker winds during 2016/17 presumably re-

duced the surface cooling of the ocean mixed layer up-

stream of Hawaii (Figs. 7a,b; nominally, the upper

100m) and, thus, the effect on upper-ocean thermosteric

sea level was positive (Fig. 1c), as is typical when the

PMM is positive (Fig. 6b). During 1998/99, nearly the

opposite pattern was observed (i.e., decreased thermo-

steric sea level associated with higher wind speeds

and enhanced surface cooling; Figs. 1c and 7c,d). After

both El Niño events, a westward propagating deepen-

ing of the thermocline (Figs. 7b,d) was underlying

the mixed layer temperature anomalies, indicative of

Rossby wave propagation (i.e., the oceanic dynamical

response to ENSO).

3. Model hierarchy

Here, using three models with varying complexities,

we test the hypothesis that the weak trade winds asso-

ciated with the positive PMM during 2016/17 contrib-

uted to the record-high sea level. We also test an

alternative hypothesis that the weak El Niño and en-

hanced Ekman pumping near the Central American

coast that preceded the 2015 El Niño (the 1997 El Niño
had no such precursor) account for the high sea levels

that Hawaii experienced in 2017. The hypotheses are

tested in a hierarchical modeling framework consisting

of a linear regression model of the Hawaii sea level re-

sponse to large-scale climate indices, a shallow-water

model that only resolves ocean dynamics forced by

surface wind stress, and an ocean general circulation

model (OGCM)with prescribed surface flux forcing that

resolves dynamical and thermodynamical processes.

a. Linear regression model

We first described the interannual sea level vari-

ability around Hawaii with a multiple linear regres-

sion model that represents the additive contributions

from the ENSO and PMM climate modes as well

as Ekman pumping velocity averaged upstream of

Hawaii (188–238N, 1508–1208W). We used monthly

Hadley Centre SST (Rayner et al. 2003) from the

Niño-3 region (58S–58N, 1508–908W) as an index of El

Niño variability and, more generally, as a proxy for a

deep thermocline and high sea level in the tropi-

cal eastern Pacific (Wyrtki 1984). The PMM index

(Chiang and Vimont 2004), which is calculated inde-

pendently of ENSO, describes the interannual–decadal

coupled variability of SST and 10-m winds in the region
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FIG. 5. Observed oceanic and atmospheric conditions related to Hawaii sea level

before, during, and after the two strong El Niño events. (a),(b) Time vs longitude

anomalies of satellite-observed SSH (shading) and reanalysis-derived Ekman

vertical velocity (green hatching: upwelling; black dots: downwelling; absolute
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218S–328N, 1758E2958W. The PMM is indicative of

the trade wind strength (Fig. 6b) and, thereby, the

atmosphere–ocean thermodynamical coupling strength

(i.e., sensible and latent heat fluxes increase with wind

speed), especially in the tropical North Pacific between

Hawaii and Mexico (Chiang and Vimont 2004).

Using the detrendedHawaii sea level anomaly, Niño-3,
Ekman, and PMM monthly indices, we first smoothed

each anomaly time series using a 13-point running

mean to isolate the interannual variability (Figs. 1b,c).

Next, we standardized the indices to have a mean of 0

and SD of 1, which we used as the predictand (Hawaii

sea level) and predictors (Niño-3, Ekman, and PMM)

in the regression model. When wind speeds are low

(e.g., during positive PMM), there is reduced surface

cooling (e.g., Fig. 7a) but that thermodynamical effect

on sea level is diminished if there is also strong up-

welling of cooler and denser subsurface water (i.e.,

Ekman suction). Thus, we switched off the PMM pre-

dictor when the Ekman index is greater than 1 SD

(indicated in Fig. 1b). A sensitivity test to the choice of

Ekman suction threshold revealed 1 SD to provide

relatively high correlation between the PMM index and

the upper-ocean thermosteric sea level at Hawaii,

while still retaining most of the degrees of freedom

associated with comparison of the full time series.

We calculated the lead–lag correlation coefficients r

between each pair of indices during 1981–2017 (Fig. 8),

which includes the recent high sea level event because it

is unique in the observational record. Niño-3 typically

FIG. 6. Observed sea level, wind stress, and SST regression patterns associated with the Niño-3 and PMM indices.

(a),(b) Regression of SSH and wind stress onto the Niño-3 and PMM indices (lag 19 and 0 months, respectively).

For the PMM regression, the upper-100-m thermosteric sea level is shown. (c),(d) Regression of SST onto the

Niño-3 and PMM indices (lag 0 months), respectively. The SST patterns within the boxes [308S–308N, 1508E–808W
in (c) and 218S–328N, 1758E–958W in (d)] are used to project the future change of the corresponding Niño-3 and

PMM indices, respectively.

 
values . 2 3 1027 m s21 are shown) during 2014–June 2018 and 1996–2000, respec-

tively. Latitudinal averaging for the cross sections is between 188 and 238N. The lon-

gitude range of the main Hawaiian Islands (1608–1548W) is enclosed by the vertical

lines. The Mexican coast is gray. (c),(d) Standardized time series of the Hawaii sea

level anomaly (orange; positive is shaded), reanalysis thermocline depth (green; in-

ferred from the 178C potential temperature isotherm), and simulated thermocline

depth from the shallow-water model (dashed gray). Anomalies are with respect to the

1993–2017monthlymean climatology. The linear trend (1993–2017) has been removed

from each variable at each grid location.
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leads Hawaii sea level by 19 months (r5 0.63), whereas

the PMMand sea level only have a weak correlation that

is not statistically significant between 0- and 24-month

lead (by 32-month lead, the PMM is correlated with

Hawaii sea level at r 5 0.44; however, that may be re-

lated to the PMM also leading Niño-3 by 16 months at

r5 0.47). There is a much stronger correlation between

PMM and the upper-100-m ocean temperature around

Hawaii (i.e., the thermosteric sea level anomaly; Fig. 1c),

which peaks at 8-month lead (r 5 0.46 for the full time

series and r 5 0.67 if omitting times of large Ekman

suction). The Ekman index leads Hawaii sea level by

10 months (r520.39). All correlations are significant at

the 95% confidence level, unless otherwise indicated.

For each pair of time series, we determined the critical

value for r based on the higher of the two autocorrela-

tion decay time scales, which determines the effective

sample size and, thus, the critical t score (Wilks 2006).

Between 0- and 19-month lead, there are only weak

(nonsignificant) correlations between Niño-3 and PMM

as well as between Niño-3 and Ekman, which suggests

that the indices vary mostly independently. Thus, we

lag the predictors in the regression model by either

19 months (Niño-3), 10 months (Ekman), or 8 months

(PMM). The regression coefficients are, respectively,

0.59, 20.35, and 0.36 for the Niño-3, Ekman, and PMM

indices.

The multiple linear regression model explains 59% of

the Hawaii sea level interannual variability (i.e., the

square of the r value listed in the Fig. 9 caption), which

is a stronger correlation than using only the Niño-3 in-

dex, or just the Niño-3 and Ekman indices without

PMM, as predictors. The regression model with all

predictors included describes well the evolution from

near normal to extremely high sea level (.2 SD) during

2015–17; however, the predicted sea level rise during

1997–99 is larger than observed (Fig. 9c), although the

bias is smaller compared to the other regression models

(Figs. 9a,b). Most importantly, the regression model

including PMM as a predictor is the only one to predict

the highest sea level during 2017 instead of 1999.

To describe the uncertainty of the multiple regression

model of how Hawaii sea level varies as a function of

Niño-3, Ekman, and PMM indices, we estimated the

90% confidence interval (Wilks 2006) around the re-

gression function (Fig. 9). Considering the large sample

size (37 years of monthly model residuals), we assumed

that the mean square error (MSE) of the prediction is

FIG. 7. Observed oceanic and atmospheric conditions related to Hawaii sea level after the two strong El Niño events when the PMM is

either (left) positive (weak trade winds) or (right) negative (strong trade winds). (a),(c) Anomalies during 2016/17 or 1998/99 of latent and

sensible heat flux (Wm22; shading; positive is more flux out of the ocean) and wind speed (contour interval: 0.1m s21; dashed: negative;

solid: positive). (b),(d)Ocean potential temperature anomalies (8C; shading) during 2016/17 or 1998/99. Thermocline depths are indicated

(black: climatology, left axes; green-dashed and green-solid: anomalies during 2016 or 1998 and 2017 or 1999, right axes). Hatching

indicates where the 2017 or 1999 thermocline is deeper than during 2016 or 1998, respectively. The dashed (solid) vertical arrows illustrate

reduced (enhanced) surface cooling related to the wind speed anomalies in (a) and (c). The horizontal arrows illustrate westward-

propagating Rossby wave energy associated with the deepening thermocline in (b) and (d). Latitudinal averaging for the cross sec-

tions is between 188 and 238N in (b) and (d). Anomalies are with respect to the 1993–2017 monthly mean climatology. The linear trend

(1993–2017) has been removed from each variable at each grid location.
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similar to the prediction variance (i.e., negligible sampling

variations) and, thus, that the confidence interval is pro-

portional to theMSEmultiplied by theZ score associated

with 90% of values (1.645). Furthermore, we measured

the prediction performance with models of varying pre-

dictors set to zero and found the highest explained vari-

ance when all three indices were used (Fig. 9c).

The linear regression model of Hawaii sea level onto

the combined effects of ENSO, Ekman dynamics, and

the PMM explains most of the interannual variability

(Fig. 9c). By including information about the PMM (i.e.,

trade wind speed and the associated surface warming or

cooling around Hawaii), we better describe the Hawaii

sea level variability compared to a regression model

based only on ENSO and Ekman dynamics, especially

following the 1997 and 2015 El Niño events, which

suggests that thermodynamics (i.e., the effects of surface

heat fluxes on mixed layer density, which on annual and

longer time scales can also penetrate into the upper

thermocline) are important.

b. Shallow-water model

We next attempted to simulate the Hawaii sea level

variability as a function of Rossby wave propagation

(i.e., without any thermodynamic forcing) in a dynami-

cal model that resolves the thermocline response to

surface wind stress forcing.We used a 1.5-layer reduced-

gravity shallow-water model of the stratified ocean with

18 horizontal resolution (McGregor et al. 2007). The

gravity wave speed, and hence also the Rossby wave

phase speed, is prescribed by imposing the observed

Rossby radius of deformation (Chelton and Schlax

1996). Anomalous wind stresses from the ERA-Interim

drive motion in the top layer of the model during 1979–

2017, while the bottom layer is assumed motionless and

infinitely deep. We measured the vertical displacements

of the thermocline, which in the model is the interface

between the top and bottom layers, to infer changes in

sea level.

Whereas this shallow-water model has demonstrated

utility in resolving thermocline variability in the equa-

torial Pacific (McGregor et al. 2007), as well as the sea

level in parts of the tropical South Pacific (Widlansky et al.

2014), we had onlymoderate success recreating theHawaii

sea level (Figs. 5c,d and 10; 33% variance explained of

1979–2017 monthly observations). Furthermore, the sim-

ple linear regression model better describes Hawaii sea

level variability than this shallow-water model, at least

FIG. 8. The lead–lag correlation between the Hawaii sea level anomaly and each of the predictor indices used in

the multiple linear regression model. Correlations between pairs of predictor indices are also shown. For the PMM

predictor, the correlation with the upper-100-m thermosteric sea level is compared (red). The vertical lines indicate

the lead or lag month of maximum r (horizontal lines). After applying a 13-month running mean, all the time series

(1979–2017) are detrended and standardized to have a mean of 0 and SD of 1.
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at annual and longer time scales (61% vs 37% variance

explained). The relatively worse performance of the

shallow-water model is despite having tuned the pre-

scribed observed gravity wave phase speed (Chelton

and Schlax 1996) (multiplied by 125%) to achieve the

highest possible local correlation and realistic west-

ward propagating anomalies (Fig. 11). During the two

years following both the 1997 and 2015 strong El Niño
events, the shallow-water model simulates a deepen-

ing of the thermocline around Hawaii (i.e., inferred

higher SSH; Fig. 11); however, the simulated change

wasmuch larger than observed during 1999 (Fig. 5d) and

somewhat too small during 2017 (Fig. 5c). Rerunning

the shallow-water model with wind stresses from the

JRA-55 (Kobayashi et al. 2015) produced similar results

(r difference was less than 0.1).

c. OGCM

1) EXPERIMENTAL DESIGN

To explore the dynamical as well as thermodynami-

cal forcing on Hawaii sea level variability in a general

circulation model framework, we used the NCAR

Community Earth System Model, version 1.1.2, and

specifically its ocean model component, the Parallel

Ocean Program version 2 (POP2; Smith et al. 2010),

which we ran at a nominal 18 horizontal resolution. The
POP2 OCGM has been shown to fully resolve the

FIG. 9. TheHawaii sea level anomaly (13-month runningmean of regional SSHas in Fig. 1c;

blue) reconstructed using a linear regression model (red) with various combinations of pre-

dictors, showing (a) only Niño-3 (19-month lead; r5 0.63), (b) Niño-3 plus Ekman (10-month

lead; r5 0.70), and (c) Niño-3, Ekman, and PMM (8-month lead; r5 0.77) smoothed indices

as predictors. Orange shading encloses the 90% confidence interval. The time series are

detrended and standardized to have a mean of 0 and SD of 1. Years following El Niño events

referred to in the text are shaded gray. Red bars in (c) indicate times when the PMM index is

not used as a predictor (i.e., Ekman suction greater than 1 SD).
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large-scale ocean dynamics and thermodynamics as-

sociated with interannual sea level variability in the

tropical Pacific (Fasullo and Gent 2017), although the

self-attraction and loading effect is not resolved as is

the case for all current-generation models of this type

(Tamisiea et al. 2010). To allow the upper ocean to

reach quasi-equilibrium (e.g., Capotondi et al. 2003),

we spun up the model from rest with atmospheric

forcing from 1979 repeatedly applied for 50 years,

which provided the initial conditions for a control

simulation of the 1979–2017 period. The atmospheric

forcing is determined from two different methods using

data from the JRA-55 product. Surface fluxes are either

calculated based on atmospheric state variables and

radiation using the aerodynamic bulk formula [i.e.,

similar to Luo et al. (2014)] or POP2 is forced directly

by daily mean surface momentum fluxes, latent and

sensible heat fluxes, solar and longwave radiation, and

freshwater flux. By prescribing fluxes, we were able to

isolate the relative roles of momentum and heat fluxes

(freshwater flux was held constant) on forcing changes

in Hawaii sea level, whereas, by calculating surface

fluxes using the bulk formula method, which is similar

to the procedure typically used in fully coupled models,

we first quantified the sea level response to changes in

the total surface forcing.

We conducted two pairs of experiments to quantify

the Hawaii sea level effects of varying atmospheric

conditions prior to or after the peak of the two strongest

El Niño events. The first pair, which we call the El Niño
termination experiments, involved either prescribing

the atmosphere during 2016/17 (weak trade winds when

the PMM was positive) to be like 1998/99 (strong trade

winds, negative PMM), or vice versa. We did not alter

FIG. 10. Observed and simulated sea level anomalies around Hawaii (box in Fig. 2) on

(a) monthly and (b) interannual time scales. Shown are SSH anomalies from the obser-

vations, multiple linear regression model [in (b) only], shallow-water model, and the

OGCM control simulation. Anomalies for each product have been standardized so that

the temporal SD is 1. Prior to standardization, the SDs of the observations and OGCM

monthly time series are 3.9 and 2.8 cm, respectively. Not listed are SDs of the regression

model, which is calculated using standardized predictors, and the shallow-water model,

whose variability is computed from thermocline depth anomalies (SDs have different

units than SSH). Standardized anomalies are with respect to the 1993–2017 monthly

mean climatology and the linear trend (1979–2017) has been removed. Years following El

Niño events referred to in the text are shaded gray.
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conditions around the peak of the El Niño events (1997

and 2015 were unchanged). The second pair, which we

call the El Niño precursor experiments, involved either

switching the 2013/14 conditions (developing weak El

Niño) to be like 1995/96 (weak La Niña), or vice versa.

Again, we did not change the atmospheric forcing

around the peaks of the El Niño events; however, we

matched the ocean initial conditions to what occurred in

the control experiment at the time of the first altered

atmospheric forcing (January 1995 or 2013) so that the

ocean and atmosphere systems remained consistent.

Together, the two pairs of experiments were used to

simulate how the Hawaii sea level would have re-

sponded under four scenarios: 1) if the 2015 El Niño was

followed by strong trade winds as occurred after the

1997 El Niño, 2) if the 1997 El Niño was followed by

weak trade winds as occurred after the 2015 El Niño, 3)
if the 2015 El Niño was preceded by La Niña conditions
as occurred prior to the 1997 El Niño, or 4) if the 1997 El

Niño was preceded by weak El Niño conditions as oc-

curred prior to the 2015 El Niño. Finally, to isolate the

thermodynamical and dynamical contributions to sea

level variability, we reran the El Niño termination ex-

periments with only atmospheric heat or momentum

fluxes altered (i.e., by prescribing the respective fluxes

rather than using the bulk formula to calculate them).

2) INTERPRETATION

It was only by using a state-of-the-art OGCM that we

were able to successfully simulate the Hawaii sea level

changes after the two strong El Niño events and achieve

the highest explained variance onmonthly (58%) as well

as interannual (69%) time scales (Fig. 10). Both the 2017

extremely high sea level (12 SD) and the near-normal

sea level during 1999 are better simulated by theOGCM

(Fig. 12) compared to the shallow-watermodel (Figs. 5c,d).

The improvement of the OGCM over the linear re-

gression model is more subtle, at least at annual time

FIG. 11. Time vs longitude anomalies of observed and simulated SSH averaged between 188 and 238N. Shown are SSH anomalies from

the observations, inferred from the thermocline displacements in the shallow-water model, and theOGCMcontrol simulation.Anomalies

for each product have been standardized so that the temporal SD at each location is 1. Standardized anomalies are with respect to the

1993–2017monthlymean climatology and the linear trend (1979–2017) has been removed at each grid location. The longitude range of the

main Hawaiian Islands (1608–1548W) is enclosed by the vertical lines. Horizontal lines enclose 1998/99 and 2016/17.
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scales (Fig. 10b). The control simulation captured the

salient features of sea level variability observed around

Hawaii (Fig. 10) and, in particular, the extremely high

sea level during 2017 (.2 SD) and near-normal sea level

during 1999 (Fig. 12). The westward propagation of high

sea level anomalies was also more realistically simulated

by the OGCM compared to using the shallow-water

model (Fig. 11).

Considering that both the shallow-water model and

OGCM are forced by similar wind stress, the more re-

alistic OGCM simulation, which is also forced by heat

fluxes, suggests that thermodynamic processes in the

ocean influence the Hawaii sea level. To diagnose spe-

cifically the mixed layer buoyancy effect on Hawaii sea

level anomalies following strong El Niño, we calculated

the thermosteric contribution from the upper 100m us-

ing the simulated ocean temperature profile. In fact, the

contribution to sea level anomalies of upper-ocean

density changes exceeded 0.5 SD during 2017 (Fig. 12a).

Opposite density anomalies occurred during 1999

(Fig. 12b). Such density changes were associated with

anomalous warming (2016/17; Fig. 7b) or cooling

(1998/99; Fig. 7d) of the ocean mixed layer in much of

the tropical North Pacific between Hawaii andMexico

during periods of either weak or strong trade winds,

respectively (Figs. 7a,c).

To test the hypothesis that the atmospheric conditions

after the peak of strong El Niño affect the Hawaii sea

level simulated by the OGCM, we utilized the two so-

called El Niño termination experiments with surface

fluxes calculated using the bulk formula: 2016/17 con-

ditions were replaced with 1998/99 and vice versa. As

noted, a primary atmospheric difference between the

two periods in the tropical northeastern Pacific was the

FIG. 12. Simulated sea level anomalies around Hawaii before, during, and after the two

strong El Niño events using the OGCM with prescribed observed atmospheric forcing (black

lines). (a) The sea level response to the 2015 El Niño is modified from the control by replacing

the atmospheric forcing so that either 2013/14 is similar to 1995/96 (purple) or 2016/17 is similar

to 1998/99 (green). (b) The sea level response to the 1997 El Niño is modified from the control

by replacing the atmospheric forcing so that either 1995/96 is similar to 2013/14 (purple) or

1998/99 is similar to 2016/17 (green). Purple and green results are associated with the precursor

and termination experiment pairs, respectively. Atmospheric conditions during the peak El

Niño year (2015 or 1997) are unchanged in all experiments. Themixed layer buoyancy effect on

sea level anomalies (thermosteric contribution from the upper 100m of the control simulation)

is indicated by the dashed lines and respective shading (orange: positive; blue: negative).

Anomalies are with respect to the 1993–2017 monthly mean model climatology and stan-

dardized with respect to the control simulation (1979–2017) having a SD of 1.

15 APRIL 2020 LONG ET AL . 3051

D
ow

nloaded from
 http://journals.am

etsoc.org/jcli/article-pdf/33/8/3037/4945041/jclid190221.pdf by N
O

AA C
entral Library user on 11 August 2020



trade wind strength near and upstream of Hawaii

(Fig. 4c). By prescribing stronger trade winds after the

2015 El Niño peaked, the 2017 extremely high sea

levels ceased to occur (Fig. 12a). Instead, sea levels

more than 1 SD below normal were simulated. On the

other hand, by prescribing weaker trade winds after the

1997 El Niño, high sea levels were simulated during

1999 (Fig. 12b), which were of similar extreme magni-

tude to those observed in 2017 (12 SD).

Rerunning both termination experiments with only

the heat flux altered (i.e., using the prescribed-flux

method) produced similar results (red lines in Fig. 13),

confirming that thermodynamical processes mostly

determine the different Hawaii sea level responses

after the two strong El Niño events. Switching only the

surface heating conditions, so that 1998/99 was like

2016/17, caused the year of highest sea levels to also

switch from 2017 to 1999. Likewise, replacing the 2016/17

heat flux with the enhanced surface cooling that oc-

curred during the windier 1998/99 period caused a

lowering of the simulated sea levels following the 2015

El Niño. Opposite changes occurred when only the

momentum flux was altered (i.e., sea levels became

higher during 2016/17 and lower during 1998/99; black

lines in Fig. 13), which suggests that the wind stress curl

after the 2015 El Niño acted to diminish the recent high

sea levels, compared to if the 1998/99 wind stress curl

had occurred. Results of the prescribed momentum

flux experiment are consistent with the observations

that there was in fact more upwelling upstream of

Hawaii following the 2015 El Niño compared to after

the 1997 event (Fig. 4c).

Alternatively to the demonstrated post–El Niño sen-

sitivity of sea level to the heat and momentum fluxes

associated with the trade winds, we hypothesized that

the prolonged warm period during 2014/15 (McPhaden

et al. 2015;Menkes et al. 2014) may have preconditioned

the ocean for subsequent high sea levels at Hawaii; un-

like after 1996/97, which began in La Niña conditions

(Fig. 1b). Whereas there are pronounced differences in

the winds and sea levels during these periods (i.e.,

Fig. 3), the precursor experiments show that altering the

ocean and atmosphere before the peak of El Niño in

2015, so that 2013/14 was like 1995/96 (i.e., shortening

the recent El Niño), actually caused the simulated

Hawaii sea level to be higher than the control (Fig. 12a).

Conversely, prolonging the previous strong El Niño,
by prescribing 1995/96 to be like 2013/14, resulted in

somewhat lower sea levels during 1999 compared to the

control (Fig. 12b). Neither of these so-called El Niño
precursor experiments suggests that the recent pro-

longed warm event, and associated 2013/14 ocean–

atmosphere conditions, substantially contributed to the

record-high sea levels at Hawaii during 2017. From the

El Niño termination and precursor experiments come

two particularly salient results toward explaining the

Hawaii sea level response to strong El Niño. First, the
wind pattern after the demise of El Niño determines

the potential for extremely high sea levels at Hawaii.

Second, longer-duration El Niño events do not cause

FIG. 13. Simulated sea level anomalies around Hawaii after the two strong El Niño events

using the OGCMwith prescribed atmospheric forcing so that either heat (red) or momentum

(black) fluxes are modified from the control (blue). During the shaded years, either both

latent and sensible heat or momentum surface fluxes are altered. The sea level response to the

2015 ElNiño ismodified from the control by replacing the atmospheric forcing so that 2016/17

is similar to 1998/99. The sea level response to the 1997 El Niño is modified from the control

by replacing the atmospheric forcing so that 1998/99 is similar to 2016/17. Anomalies are with

respect to the 1993–2017 monthly mean model climatology and standardized with respect to

the control simulation (1979–2017) having a SD of 1.
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higher sea levels at Hawaii. The second result disproves

our alternative hypothesis that the 2017 high sea levels

were somehow associated with the prolonged El Niño
conditions that began in 2014. In fact, bymaking 2013/14

to be more La Niña–like, by prescribing 1995/96 ocean–
atmosphere conditions, the simulated Hawaii sea level

anomaly was nearly 1 SD higher than the control

(Fig. 12a). Furthermore, by replacing the momentum

flux during 2016/17 with 1998/99 conditions so that more

downwelling occurred after the 2015 El Niño, while
keeping the heat flux as observed, the simulated high sea

levels increased during both 2016 and 2017 (Fig. 13).

Therefore, the observed 2017 anomalies should not be

considered an upper bound on the possible amplitude or

occurrence of future high sea levels.

As is clear from the OGCM experiments, the trade

wind strength provides an important control primarily

through surface heat flux changes for whether, or not,

high sea levels will occur at Hawaii after strong El Niño.
Observations of the sea level–trade wind–ENSO rela-

tionship (Fig. 14a), while limited by record length, sup-

port such a mechanism of sea level control. Since 1979,

the majority of months that sea levels were extremely

high at Hawaii (.1 SD; shaded orange in Fig. 14a) oc-

curred when trade winds tended to be weak (34 out of

61 months), as inferred from positive PMM (.0.5 SD;

lead 8 months). The Hawaii sea level relationship after

strong El Niño is comparatively weaker (18 out of

61 months were extremely high 19 months after Niño-3
peaked above 1 SD), although almost all low sea level

events (,21 SD; shaded blue in Fig. 14a) follow the cool

phase of ENSO (i.e., La Niña; Niño-3 , 20.5 SD). In

combining these two relationships, our multiple linear

regression model of the sea level response to ENSO

and trade wind strength, as well as Ekman dynamics

(Fig. 9c), predicts that the highest sea levels at Hawaii

will occur when both the lagged-Niño-3 and PMM in-

dices are positive (i.e., weak trade winds following

strong El Niño). The only observation of such conditions
is the 2017 high sea level event, which appears alone in

the upper-right quadrant of Fig. 14a.

4. Future change

Coupled ocean–atmosphere climate models such as

CMIP5 (Taylor et al. 2012), which simulate well the

observed sea level interannual variability in the tropical

Pacific (e.g., Yin et al. 2010), provide an opportunity to

assess the likelihood of conditions associated with the

2017 high sea levels occurring in the past or future.

Following a recent study that found an increase of the

future interannual sea level variability in most of the

tropical Pacific (Widlansky et al. 2015), including an

unexplained 10% increase around Hawaii, we assessed

the greenhouse warming projections in CMIP5 models

(Tables 2 and 3). We specifically quantified the Hawaii

SSH variability related to changes in the future occur-

rence of positive PMM conditions after strong El Niño
events. Increasing joint occurrence of such is consistent

with more frequent high sea level events at Hawaii and,

hence, also the increasing regional sea level variability

identified in CMIP5 projections.

The methods of assessing CMIP5 are similar to those

employed in Widlansky et al. (2015), and this para-

graph is derived from there with minor modifications.

Here, though, we specifically consider the SSH and SST

(used to describe the PMM and El Niño indices) vari-

ability around Hawaii. We assessed one experiment

from each model, covering the period 1911–2100 using

historical anthropogenic and natural forcings to 2005

and then the future emission scenario (RCP8.5), which

ignores volcanic and other natural aerosols, for the

later 95 years. For each model, we first interpolate the

dynamic SSH and SST to a uniform 18 latitude 3 18
longitude grid using bilinear interpolation. We calcu-

lated the monthly anomalies of both variables with

respect to the last 30 years of the historical period

(1976–2005). We derived changes in the frequency of

positive PMM after El Niño events (Fig. 14b) by

comparing the first 95 years (historical period) to the

later 95 years (future period); thus, there was a large

ratio between the climate change signal and any higher-

frequency variability internal to the models. In as-

sessing the future occurrence of Hawaii sea level

anomalies (Fig. 14c), we removed each model’s global

average SSH anomaly at each month but retained the

spatial patterns of any long-term sea level trends in-

herent to the model.

We examined the joint occurrence of positive PMM-

like events (.0.5 SD) following strong El Niño–like
events (Niño-3 . 1 SD) in the CMIP5 historical period

by projecting simulated monthly SST anomalies from

each model onto the observed SST patterns associated

with the respective indices (Figs. 6c,d). The number of

months for PMM lagging Niño-3 was determined for

each model based on the CMIP5 correlations of the in-

dices and the oceanic conditions around Hawaii (in-

ferred from SST and sea level, respectively; Table 2).

This exercise produces amultimodel average count of 59

joint occurrences during 1911–2005. (Table 3 shows

the historical and future occurrences for each model.)

With unabated greenhouse warming (i.e., the RCP8.5

future emissions experiment, 2006–2100), we found that

the occurrence of strong El Niño followed by positive

PMM conditions is likely to increase during the twenty-

first century (72 months on average; see also Fig. 14b).
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The future increase is robust across CMIP5 (21 out of 30

models; 57 vs 81months on average among the increasing

subset). Less likely to occur in the future projection are

conditions like 1999 when the PMM was negative after a

strong El Niño (i.e., lower-right quadrants of Figs. 14a,b)

and the Hawaii sea level was near normal. These results

are consistent with modeling evidence that the PMM is

likely to become more energetic this century as the

ocean–atmosphere coupling strengthens in the tropical

North Pacific (Liguori and Di Lorenzo 2018).

FIG. 14. Observed relationship between ENSO and the PMM, its future change under greenhouse warming,

and the changing probability distributions of SSH and Ekman vertical velocity anomalies. (a) Lagged rela-

tionship between the Niño-3 (19 month) and PMM (8 month) standardized indices. Circles are colored by the

monthly sea level anomaly at Hawaii (orange: .1 SD; blue: ,21 SD). Months during years following the

strongest El Niño events are indicated by the curved arrows (1984, 1999, and 2017). The green box (Niño-3. 1 SD

and PMM . 0.5 SD) encloses the 2017 high sea level event. Red asterisks indicate when upwelling was strong

(.1 SD; Fig. 1b) and the PMM index was not used in the regression model. (b) Projected increase in positive

PMM events (weak trade winds) following strong El Niño events from the historical to future period (1774 vs

2163 simulated months in the green box when Niño-3 . 1 SD and PMM . 0.5 SD). (c),(d) Distribution of

observed (gray bars; 1979–2017) and simulated (CMIP5; 1911–2005 and 2006–2100) SSH and Ekman vertical

velocity monthly anomalies around and upstream of Hawaii, respectively. A kernel smoothing function (normal

distribution; bin width of 1 cm) is applied to each distribution of SSH: black (observations), blue (historical), and

red (RCP8.5) lines. The observedAugust 2017 sea level anomaly is indicated by an arrow (satellite altimetry with

respect to the 1993–2017 climatology; linear trend removed). (d) For Ekman monthly anomalies (positive:

upwelling; negative: downwelling), a kernel smoothing function (normal distribution; bin width of 1 cm day21) is

similarly applied to each distribution. The mean of RCP8.5 is 1.1 cm day21 more than that of the historical, which

suggests a higher probability of upwelling for the twenty-first century. The Ekman averaging region (188–238N,

1508–1208W) is shown in Figs. 3 and 4.
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As in Widlansky et al. (2015), we used a bootstrap

resampling method of the CMIP5 ensemble to examine

whether the change in frequency of positive PMM

occurrence after strong El Niño events is statistically

significant. The counts of joint occurrence from the

30 models in the historical and future 95-yr periods

(Table 3) were randomly resampled with replacement

to construct 10 000 realizations. The SD of the future

minus historical differences of extreme months in the

intermodel realization is 183 months, which is more

than 2 times smaller than the total difference between

the historical and the future periods at 389 months,

indicating statistical significance of the multimodel

difference above the 95% confidence level. A two-

sided t test of the difference of means between the

historical and future periods was similarly positive for

significance at that level.

Previous studies have shown that climate model pro-

jections mostly agree that the atmospheric and sea level

effects associated with strong El Niño are likely to be-

come more frequent with greenhouse warming (Cai

et al. 2015, 2018; Widlansky et al. 2015). For Hawaii

specifically, the probability of monthly high sea level

anomalies with similar magnitude to the 2017 event

(.10 cm above normal; Fig. 14c) increases in CMIP5

this century. More generally, the SD of Hawaii sea level

increases from 3.2 cm during the historical simulation to

3.7 cm during the twenty-first century (the change of

multimodel mean variability is significant above the

95% confidence level using both the t test and bootstrap

TABLE 2. Historical statistics of CMIP5 models. The correlations and month of maximum lead between the Niño-3-like and PMM-like

indices with Hawaii sea level and ocean temperature, respectively, are listed for available models (long dashes indicates missing data).

Temperature data are from the uppermost ocean level for each model. Italic numbers are not significant above the 95% confidence

level (testing method is as discussed in section 3a). (Expansions of acronyms are available online at http://www.ametsoc.org/

PubsAcronymList.)

Model

Niño-3-like and sea level PMM-like and ocean temperature

Correlation Lead (months) Correlation Lead (months)

ACCESS1.0 0.27 9 0.61 2

ACCESS1.3 0.37 9 0.32 2

BCC-CSM1.1 0.13 16 0.46 0

BCC-CSM1.1-m 0.17 17 0.41 0

CanESM2 0.27 13 0.61 3

CCSM4 0.53 10 0.62 0

CESM1-BGC 0.26 9 0.50 1

CMCC-CESM 0.57 18 0.71 3

CMCC-CM 0.29 9 0.54 0

CMCC-CMS 0.52 19 0.63 2

CNRM-CM5 — — — —

CSIRO-Mk3.6.0 0.23 9 0.79 5

EC-EARTH 0.24 14 0.57 0

FGOALS-g2 0.10 15 0.45 0

FIO-ESM 0.76 11 0.43 0

GFDL CM3 0.27 16 0.49 0

GFDL-ESM2G 0.55 18 0.77 2

GFDL-ESM2M 0.58 13 0.66 1

GISS-E2-R 0.10 10 0.53 1

GISS-E2-R-CC 0.10 12 0.48 1

HadGEM2-CC 0.03 36 0.59 4

HadGEM2-ES 0.27 18 0.70 1

INM-CM4 0.28 36 0.62 2

IPSL-CM5A-LR 0.40 8 0.66 2

IPSL-CM5A-MR 0.32 18 0.71 1

IPSL-CM5B-LR 0.10 11 0.08 27

MIROC5 0.75 9 0.65 0

MIROC-ESM — — — —

MIROC-ESM-CHEM 0.65 10 0.80 2

MPI-ESM-LR 0.36 14 0.75 3

MPI-ESM-MR 0.62 12 0.75 1

MRI-CGCM3 0.12 19 0.19 0

MRI-ESM1 0.04 19 0.10 0

NorESM1-M 0.41 11 0.70 3

NorESM1-ME 0.55 11 0.66 3
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methods) and 28 out of 35 models agree on the increase

(3.1 vs 3.8 cm among the subset; Table 3). The increas-

ing sea level variability at Hawaii is not explained by

projected changes in Ekman pumping (Table 3 and

Fig. 14d), which become only 2% more variable with

greenhouse warming compared to a 13%–16% increase

for sea level (the range being related to whether the SDs

of the historical and future periods are rounded to the

nearest millimeter prior to, or after, taking the respective

multimodel averages). Unlike the statistically robust

projection of increasing Hawaii sea level variability, the

Ekman pumping future variability change is not signif-

icantly different from the intermodel characteristics

during the historical period and, furthermore, only half

of the models agree on any increase.

5. Discussion

Should trade winds near Hawaii weaken with green-

house warming (i.e., a trend toward more positive PMM

conditions), which would decrease the surface cooling of

the ocean mixed layer and thus increase its buoyancy

(Thompson and Ladd 2004), it would be reasonable to

expect more frequent high sea levels following future

strong El Niño events. Such a change, with oceanic

anomalies becoming more likely to propagate westward

TABLE 3. Future change statistics of CMIP5 models. The projected Hawaii sea level variability (SD of regional SSH; black box in

Fig. 2), occurrence of weak trade winds after strong El Niño, and Ekman variability upstream of Hawaii (SD; gray boxes in Figs. 3 and 4)

are listed for availablemodels. The numbers ofmonths are calculated based on projections of Niño-3. 1 SD andPMM. 0.5 SD atmodel-

specific leads (see Table 2). Boldface numbers indicate an increase from the historical (1911–2005) to the future (2006–2100, RCP8.5

scenario) periods; italics indicate a decrease. Three models were excluded from the lagged-Niño-3 and PMM calculations, as well as for

Ekman variability (different models) due to missing data (long dashes). For comparison, the observed SD of Hawaii sea level was 3.9 cm,

the occurrence of lagged-Niño-3 . 1 SD and PMM indices . 0.5 SD was 25 months during 1979–2017, and the SD of Ekman vertical

velocity was 3.2 cm day21.

Model Hawaii sea level variability (cm) Weak trade winds after El Niño (months) Ekman variability (cm day21)

ACCESS1.0 2.6/3.5 135/172 4.3/4.1

ACCESS1.3 2.6/4.3 162/193 3.8/4.7
BCC-CSM1.1 3.4/3.6 115/117 4.5/7.1

BCC-CSM1.1-m 2.5/2.9 136/135 4.5/4.7

CanESM2 2.2/2.8 146/169 3.9/4.0

CCSM4 3.3/3.0 150/145 4.7/4.0

CESM1-BGC 3.5/3.0 142/153 4.7/4.3

CMCC-CESM 4.3/6.0 151/160 6.3/5.9

CMCC-CM 2.2/3.1 120/140 5.6/6.1
CMCC-CMS 3.0/4.0 142/201 5.6/6.1

CNRM-CM5 2.9/2.8 — 5.1/4.9

CSIRO-Mk3.6.0 3.9/4.2 105/149 3.6/3.8

EC-EARTH 3.7/4.3 97/135 —

FGOALS-g2 2.5/3.4 146/— 4.0/4.3

FIO-ESM 4.1/3.7 247/220 5.4/4.5

GFDL CM3 2.9/3.2 125/156 5.6/6.6

GFDL-ESM2G 4.7/5.0 105/111 6.3/6.6
GFDL-ESM2M 4.5/4.0 80/110 6.7/6.5

GISS-E2-R 2.5/2.9 139/124 4.8/4.5

GISS-E2-R-CC 2.7/2.9 142/160 —

HadGEM2-CC 3.3/3.6 143/151 4.6/5.1

HadGEM2-ES 3.3/3.4 120/168 4.7/5.3

INM-CM4 3.2/3.0 147/133 5.2/4.8

IPSL-CM5A-LR 3.7/3.4 140/125 4.9/4.7

IPSL-CM5A-MR 3.5/3.7 121/124 4.6/5.1

IPSL-CM5B-LR 3.1/3.3 137/163 5.3/5.2

MIROC5 4.7/5.5 82/91 5.5/6.2

MIROC-ESM 2.9/4.1 — 5.0/4.7

MIROC-ESM-CHEM 2.8/3.7 121/91 4.8/4.6

MPI-ESM-LR 3.7/4.4 167/165 5.5/5.9

MPI-ESM-MR 3.6/4.7 157/140 5.4/5.7

MRI-CGCM3 2.7/3.0 101/142 4.9/4.9

MRI-ESM1 2.3/2.7 99/159 —

NorESM1-M 3.1/3.3 163/161 4.7/3.9

NorESM1-ME 3.2/3.8 209/172 4.9/4.1
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across the tropical North Pacific, rather than to remain

near the coast, may determine potentially far-reaching

climate implications (Jacobs et al. 1994). Considering

that oceanic anomalies take 5–10 years to traverse the

subtropical and midlatitude Pacific, it will require sev-

eral more years to know whether or not the positive

PMM following the 2015 El Niño contributed to larger

decadal perturbations compared to the negative PMM

after the 1997 El Niño.
In addition to affecting the large-scale sea level pat-

tern, the trade winds could also force sea level vari-

ability around Hawaii via local processes, in particular

through the wind stress curl generated by interaction

with island topography (Fig. 4, insets). Understanding

the impact of such localized mechanisms and potential

differences after the two strong El Niño events re-

quires further study. Addressing such issues will re-

quire OGCM experiments with much higher spatial

resolution than we utilized, in addition to requiring

surface forcing products that resolve well the complex

winds around the Hawaiian Islands. Determining such

localized oceanic responses to trade wind variability

may likewise have large-scale climate implications,

especially in the northwestern Pacific, which is strongly

affected by the wind wake to the lee of Hawaii (Xie

et al. 2001).

Increasing occurrence of interannual high sea levels

around Hawaii will accelerate the regional risks posed

by remotely-generated surface waves (Cheriton et al.

2016) or storm surges during hurricanes (Widlansky

et al. 2019), which will be exacerbated by long-term

sea level rise (Sweet et al. 2017). More frequent high

sea levels like during 2017 will also increase the

probability of exceeding local thresholds for causing

nuisance-level flooding around times of high tides

(Sweet et al. 2014), which will likely become more

detrimental with increasing occurrence (Thompson et al.

2019). Forecasting sea level fluctuations (Widlansky

et al. 2017), if skillful predictions are achievable at

sufficient lead times, may help alert stakeholders in

Hawaii and elsewhere that experiences interannual

variability to prepare assets along vulnerable coasts

(Anderson et al. 2018) for when future high sea level

events occur.
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